Measure of Empty Set is Zero
Jump to navigation
Jump to search
Theorem
Let $\struct {X, \Sigma, \mu}$ be a measure space.
Then $\map \mu \O = 0$.
That is, $\O$ is a $\mu$-null set.
Proof
By definition of measure, there exists at least one $E \in \Sigma$ such that $\map \mu E$ is finite.
So, suppose that $E \in \Sigma$ such that $\map \mu E$ is finite.
Let $\map \mu E = x$.
Consider the sequence $\sequence {S_n}_{n \mathop \in \N} \subseteq \Sigma$ defined as:
- $S_n = \begin {cases} E & : n = 1 \\ \O & : n > 1 \end {cases}$
Then:
- $\ds \bigcup_{n \mathop = 1}^\infty S_n = E$
Hence:
\(\ds \map \mu E\) | \(=\) | \(\ds x\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \mu \paren {\bigcup_{n \mathop = 1}^\infty S_n}\) | \(=\) | \(\ds x\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{n \mathop = 1}^\infty \map \mu {S_n}\) | \(=\) | \(\ds x\) | Property $(2)$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \mu E + \sum_{n \mathop = 2}^\infty \map \mu \O\) | \(=\) | \(\ds x\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{n \mathop = 2}^\infty \map \mu \O\) | \(=\) | \(\ds 0\) |
It follows directly that $\map \mu \O = 0$.
$\blacksquare$
Sources
- 2005: René L. Schilling: Measures, Integrals and Martingales ... (previous) ... (next): $\S 4$: Problem $10 \ \text{(i)}$