Median of Normal Distribution
Jump to navigation
Jump to search
Theorem
Let $X \sim \Gaussian \mu {\sigma^2}$ for some $\mu \in \R, \sigma \in \R_{> 0}$, where $N$ is the normal distribution.
Then the median of $X$ is equal to $\mu$.
Proof
From the definition of the normal distribution, $X$ has probability density function:
- $\map {f_X} x = \dfrac 1 {\sigma \sqrt {2 \pi} } \map \exp {-\dfrac {\paren {x - \mu}^2} {2 \sigma^2} }$
Note that $f_X$ is non-zero, sufficient to ensure a unique median.
By the definition of a median, to prove that $\mu$ is the median of $X$ we must verify:
- $\ds \map \Pr {X < \mu} = \int_{-\infty}^\mu \map {f_X} x \rd x = \frac 1 2$
We have:
\(\ds \int_{-\infty}^\mu \map {f_X} x \rd x\) | \(=\) | \(\ds \frac 1 {\sigma \sqrt {2 \pi} } \int_{-\infty}^\mu \map \exp {-\frac {\paren {x - \mu}^2} {2 \sigma^2} } \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sqrt 2 \sigma} {\sigma \sqrt {2 \pi} } \int_{-\infty}^{\frac {\mu - \mu} {\sqrt 2 \sigma} } \map \exp {-t^2} \rd t\) | substituting $t = \dfrac {x - \mu} {\sqrt 2 \sigma}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {\sqrt \pi} \int_{-\infty}^0 \map \exp {-t^2} \rd t\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {2 \sqrt \pi} \int_{-\infty}^\infty \map \exp {-t^2} \rd t\) | Definite Integral of Even Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sqrt \pi} {2 \sqrt \pi}\) | Gaussian Integral | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2\) |
$\blacksquare$