Medians of Triangle Form Six Triangles of Equal Area

From ProofWiki
Jump to navigation Jump to search

Theorem

CentroidOfTriangle.png

Let $\triangle ABC$ be an arbitrary triangle.

Draw $AL$, $BM$ and $CN$, the medians of $\triangle ABC$.

Then $\triangle ABC$ is divided into six small triangles:

  • $\triangle GAN$
  • $\triangle GBN$
  • $\triangle GBL$
  • $\triangle GCL$
  • $\triangle GCM$
  • $\triangle GAM$

Each one of these six triangles has the same area.


Proof

CentroidOfTriangle.png

by hypothesis:

  • $AN = BN$
  • $BL = CL$
  • $CM = AM$

Each pair of triangles with bases on the same side of $\triangle ABC$ consists of two triangles:

with a base of the same magnitude
that share the same vertex, $G$
so they have the same height

It follows by Triangles with Equal Base and Same Height have Equal Area:

each member of the pair has the same area.
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \AA \paren { GAN }\) \(=\) \(\ds \AA \paren { GBN }\)
\(\text {(2)}: \quad\) \(\ds \AA \paren { GCM }\) \(=\) \(\ds \AA \paren { GAM }\) mutatis mutandis
\(\text {(3)}: \quad\) \(\ds \AA \paren { GBL }\) \(=\) \(\ds \AA \paren { GCL }\) mutatis mutandis

Now consider the pair $\triangle CAN$ and $\triangle CBN$:

they have bases of equal magnitude
they have the same vertex $C$
so they have the same altitude and equal height.

By Triangles with Equal Base and Same Height have Equal Area:

$\AA \paren { CAN } = \AA \paren { CBN }$

It follows that the component triangles of $\triangle CAN$ and $\triangle CBN$ add up to the same total area.

\(\ds \leadsto \ \ \) \(\ds \AA \paren { GAN } + \AA \paren { GAM } + \AA \paren { GCM }\) \(=\) \(\ds \AA \paren { GBN } + \AA \paren { GBL } + \AA \paren { GCL }\)
\(\ds \AA \paren { GAM } + \AA \paren { GCM }\) \(=\) \(\ds \AA \paren { GBL } + \AA \paren { GCL }\) Common Notion $2$ with $(1)$
\(\ds 2 \cdot \AA \paren { GCM }\) \(=\) \(\ds 2 \cdot \AA \paren { GCL }\) Common Notion $1$ with $(2)$ and $(3)$
\(\ds \leadsto \ \ \) \(\ds \AA \paren { GCM }\) \(=\) \(\ds \AA \paren { GCL }\)
\(\ds \AA \paren { GAM }\) \(=\) \(\ds \AA \paren { GAN }\) mutatis mutandis
\(\ds \AA \paren { GBL }\) \(=\) \(\ds \AA \paren { GBN }\) mutatis mutandis
\(\ds \AA \paren { GCM }\) \(=\) \(\ds \AA \paren { GCL }\) mutatis mutandis

The result follows.

$\blacksquare$