Mediant is Between/Corollary 2/Proof 2

From ProofWiki
Jump to navigation Jump to search

Corollary to Mediant is Between

Let $a, b, c, d \in \R$ be real numbers such that $b > 0, d > 0$.

Let $\dfrac a b = \dfrac c d$.

Then:

$\dfrac a b = \dfrac {a + c} {b + d} = \dfrac c d$


Proof

\(\ds \dfrac {a + c} {b + d}\) \(=\) \(\ds \dfrac a b \times \dfrac {b \paren {a + c} } {a \paren {b + d} }\) multiplying by $\dfrac a b \times \dfrac b a$
\(\ds \) \(=\) \(\ds \dfrac a b \times \dfrac {1 + c / a} {1 + d / b}\) dividing top and bottom by $a b$
\(\ds \dfrac {a + c} {b + d}\) \(=\) \(\ds \dfrac c d \times \dfrac {d \paren {a + c} } {c \paren {b + d} }\) multiplying by $\dfrac c d \times \dfrac d c$
\(\ds \) \(=\) \(\ds \dfrac c d \times \dfrac {1 + a / c} {1 + b / d}\) dividing top and bottom by $c d$
\(\ds \leadsto \ \ \) \(\ds \dfrac a b = \dfrac c d\) \(=\) \(\ds \dfrac {a + c} {b + d}\)

$\blacksquare$