Metric over 1 plus Metric forms Metric/Topological Equivalence
Jump to navigation
Jump to search
Theorem
Let $M = \struct {A, d}$ be a metric space.
Let $d_3: A^2 \to \R$ be the metric on $M$ defined as:
- $\forall \tuple {x, y} \in A^2: \map {d_3} {x, y} = \dfrac {\map d {x, y} } {1 + \map d {x, y} }$
$d_3$ is topologically equivalent to $d$.
Proof
That $d_3$ forms a metric on $M$ is demonstrated in Metric over 1 plus Metric forms Metric.
We have that:
- $\forall x, y \in A^2: \map {d_3} {x, y} \le \map d {x, y}$
Hence:
- $\map {B_\epsilon} {x; d} \subseteq \map {B_\epsilon} {x; d_3}$
where $\map {B_\epsilon} {x; d}$ denotes the open $\epsilon$-ball of $x$ in $\struct {A, d}$.
Hence:
- if $U \subseteq A$ is $d_3$-open, the $U$ is $d$-open
where $U$ is a subset of $A$.
Let $U \subseteq A$ be $d$-open.
Let $x \in U$.
Then $\map {B_\epsilon} {x; d} \subseteq U$ for some $\epsilon \in \r_{>0}$.
Let $\delta = \min \set {\dfrac \epsilon 2, \dfrac 1 2}$.
Then:
- $\map {d_3} {x, y} < \delta \implies \map {d_3} {x, y} < \dfrac 1 2$
and so:
\(\ds \map d {x, y}\) | \(=\) | \(\ds \dfrac {\map {d_3} {x, y} } {1 - \map {d_3} {x, y} }\) | ||||||||||||
\(\ds \) | \(\le\) | \(\ds \map {d_3} {x, y}\) | ||||||||||||
\(\ds \) | \(<\) | \(\ds 2 \map {d_3} {x, y}\) | ||||||||||||
\(\ds \) | \(<\) | \(\ds \epsilon\) |
Hence:
- $\map {B_\epsilon} {x; d_2} = \map {B_\epsilon} {x; d} \subseteq U$
demonstrating that $U$ is $d_2$-open.
Note that $\delta = \dfrac \epsilon {1 + \epsilon}$ is just as good:
- $\map f a = \dfrac a {1 + a}$ is strictly increasing for $a \ge 0$
and so:
\(\ds \map {d_3} {x, y}\) | \(<\) | \(\ds \dfrac \epsilon {1 + \epsilon}\) | ||||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \map d {x, y}\) | \(<\) | \(\ds \epsilon\) |
The result follows.
$\blacksquare$
Sources
- 1975: W.A. Sutherland: Introduction to Metric and Topological Spaces ... (previous) ... (next): $2$: Continuity generalized: metric spaces: Exercise $2.6: 20$