Minimally Inductive Class under Progressing Mapping induces Nest

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $M$ be a class which is minimally inductive under a progressing mapping $g$.

Then $M$ is a nest in which:

$\forall x, y \in M: \map g x \subseteq y \lor y \subseteq x$


Proof 1

Let $\RR$ be the relation on $M$ defined as:

$\forall x, y \in M: \map \RR {x, y} \iff \map g x \subseteq y \lor y \subseteq x$


We are given that $g$ is a progressing mapping.

From the Progressing Function Lemma, we have that:

\((1)\)   $:$     \(\ds \forall y \in \Dom g:\)    \(\ds \map \RR {y, \O} \)   
\((2)\)   $:$     \(\ds \forall x, y \in \Dom g:\)    \(\ds \map \RR {x, y} \land \map \RR {y, x} \)   \(\ds \implies \)   \(\ds \map \RR {x, \map g y} \)      


From the Double Induction Principle, if $\RR$ is a relation on $M$ which satisfies:

\((\text D_1)\)   $:$     \(\ds \forall x \in M:\) \(\ds \map \RR {x, \O} \)      
\((\text D_2)\)   $:$     \(\ds \forall x, y \in M:\) \(\ds \map \RR {x, y} \land \map \RR {y, x} \implies \map \RR {x, \map g y} \)      

then $\map \RR {x, y}$ holds for all $x, y \in M$.


Thus:

$\forall x, y \in M: \map g x \subseteq y \lor y \subseteq x$

follows directly.

$\Box$


Then the fact that:

$\map g x \subseteq y \lor y \subseteq x$

implies that:

$x \subseteq y \lor y \subseteq x$

because:

$x \subseteq \map g x$

Hence the result by definition of a nest.

$\blacksquare$


Proof 2

A minimally inductive class under $g$ is the same thing as a minimally closed class under $g$ with respect to $\O$.

The result then follows by a direct application of Minimally Closed Class under Progressing Mapping induces Nest.

$\blacksquare$