Modus Ponendo Ponens/Proof Rule/Tableau Form

From ProofWiki
Jump to navigation Jump to search

Proof Rule

Let $\phi \implies \psi$ be a propositional formula in a tableau proof whose main connective is the implication operator.

The Modus Ponendo Ponens is invoked for $\phi \implies \psi$ and $\phi$ as follows:

Pool:    The pooled assumptions of $\phi \implies \psi$             
The pooled assumptions of $\phi$             
Formula:    $\psi$             
Description:    Modus Ponendo Ponens             
Depends on:    The line containing the instance of $\phi \implies \psi$             
The line containing the instance of $\phi$             
Abbreviation:    $\text{MPP}$ or $\implies \mathcal E$             


Sources