Modus Ponendo Tollens/Proof Rule

From ProofWiki
Jump to navigation Jump to search

Proof Rule

Modus ponendo tollens is a valid argument in types of logic dealing with conjunctions $\land$ and negation $\neg$.

This includes propositional logic and predicate logic, and in particular natural deduction.


As a proof rule it is expressed in either of the two forms:

$(1): \quad$ If we can conclude $\map \neg {\phi \land \psi}$, and we can also conclude $\phi$, then we may infer $\neg \psi$.
$(2): \quad$ If we can conclude $\map \neg {\phi \land \psi}$, and we can also conclude $\psi$, then we may infer $\neg \phi$.


It can be written:

$\ds {\map \neg {\phi \land \psi} \quad \phi \over \neg \psi} \textrm{MPT}_1 \qquad \text{or} \qquad {\map \neg {\phi \land \psi} \quad \psi \over \neg \phi} \textrm{MPT}_2$


Tableau Form

Let $\phi \land \psi$ be a well-formed formula in a tableau proof whose main connective is the conjunction operator.

The Modus Ponendo Tollens is invoked for $\neg \left({\phi \land \psi}\right)$ in either of the two forms:


Form 1
Pool:    The pooled assumptions of $\neg \left({\phi \land \psi}\right)$      
The pooled assumptions of $\phi$      
Formula:    $\neg \psi$      
Description:    Modus Ponendo Tollens      
Depends on:    The line containing the instance of $\neg \left({\phi \land \psi}\right)$      
The line containing the instance of $\phi$      
Abbreviation:    $\text{MPT}_1$      


Form 2
Pool:    The pooled assumptions of $\neg \left({\phi \land \psi}\right)$      
The pooled assumptions of $\psi$      
Formula:    $\neg \phi$      
Description:    Modus Ponendo Tollens      
Depends on:    The line containing the instance of $\neg \left({\phi \land \psi}\right)$      
The line containing the instance of $\psi$      
Abbreviation:    $\text{MPT}_2$      


Explanation

The Modus Tollendo Ponens can be expressed in natural language as:

If two statements cannot both be true, and one of them is true, it follows that the other one is not true.


Also see


Linguistic Note

Modus Ponendo Tollens is Latin for mode that by affirming, denies.


Technical Note

When invoking Modus Ponendo Tollens in a tableau proof, use the {{ModusPonendoTollens}} template:

{{ModusPonendoTollens|line|pool|statement|first|second|1 or 2}}

or:

{{ModusPonendoTollens|line|pool|statement|first|second|1 or 2|comment}}

where:

line is the number of the line on the tableau proof where Modus Ponendo Tollens is to be invoked
pool is the pool of assumptions (comma-separated list)
statement is the statement of logic that is to be displayed in the Formula column, without the $ ... $ delimiters
first is the first of the two lines of the tableau proof upon which this line directly depends, the one in the form $\neg \left({\phi \land \psi}\right)$
second is the second of the two lines of the tableau proof upon which this line directly depends, the one in the form $\phi$ or $\psi$
1 or 2 should hold 1 for ModusPonendoTollens_1, and 2 for ModusPonendoTollens_2
comment is the (optional) comment that is to be displayed in the Notes column.