Moment Generating Function of Gamma Distribution/Examples/First Moment

From ProofWiki
Jump to navigation Jump to search

Examples of Use of Moment Generating Function of Gamma Distribution

Let $X \sim \map \Gamma {\alpha, \beta}$ for some $\alpha, \beta > 0$, where $\Gamma$ is the Gamma distribution.

Let $t < \beta$.


The first moment generating function of $X$ is given by:

$\map { {M_X}'} t = \dfrac {\beta^\alpha \alpha} {\paren {\beta - t}^{\alpha + 1} }$


Proof

We have:

\(\ds \map { {M_X}'} t\) \(=\) \(\ds \map {\frac \d {\d t} } {1 - \frac t \beta}^{-\alpha}\) Moment Generating Function of Gamma Distribution
\(\ds \) \(=\) \(\ds \beta^\alpha \map {\frac \d {\d t} } {\frac 1 {\paren {\beta - t}^\alpha} }\)
\(\ds \) \(=\) \(\ds \beta^\alpha \, \map {\frac \d {\map \d {\beta - t} } } {\frac 1 {\paren {\beta - t}^\alpha} } \cdot \map {\frac \d {\d t} } {\beta - t}\) Chain Rule for Derivatives
\(\ds \) \(=\) \(\ds \paren {-1}^2 \frac {\beta^\alpha \alpha} {\paren {\beta - t}^{\alpha + 1} }\) Derivative of Power
\(\ds \) \(=\) \(\ds \frac {\beta^\alpha \alpha} {\paren {\beta - t}^{\alpha + 1} }\)

$\blacksquare$