Monomials of Polynomial Ring are Linearly Independent/One Variable

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $R$ be a commutative ring with unity.

Let $R \sqbrk X$ be a polynomial ring in one variable $X$ over $R$.

Then the set of monomials $\set {X^k : k \in \N}$ is linearly independent.


Proof

We consider polynomial ring over sequences in $R$:


Let $\struct {R^{\left({\N}\right)}, \oplus, \odot}$ be the underlying ring of sequences of finite support.

Recall:

$X = \sequence {0, 1, 0, 0, \ldots}$


Observe:

\(\ds X^2\) \(=\) \(\ds \sequence {0, 0, 1, 0, 0, \ldots}\)
\(\ds X^3\) \(=\) \(\ds \sequence {0, 0, 0, 1, 0, \ldots}\)
\(\ds \) \(\cdots\) \(\ds \)
\(\ds X^k\) \(=\) \(\ds \sequence {\underbrace {0, \ldots, 0}_k, 1, 0, \ldots}\)
\(\ds \) \(\cdots\) \(\ds \)

More generally, for all $r \in R$ and $k \in \N$:

\(\ds r X^k\) \(=\) \(\ds \map \iota r \odot \sequence {\underbrace{0,\ldots,0}_k,1,0,\ldots}\)
\(\ds \) \(=\) \(\ds \sequence {r,0,\ldots} \odot \sequence {\underbrace{0,\ldots,0}_k,1,0,\ldots}\)
\(\ds \) \(=\) \(\ds \sequence {\underbrace{0,\ldots,0}_k,r,0,\ldots}\)


Now let $n \in \N$ and $r_0,\ldots,r_n \in R$ be such that:

$r_0 + r_1 X + r_2 X^2 + \cdots + r_n X^n = 0$

That is:

\(\ds \) \(\) \(\ds \sequence {r_0,0,\ldots} \oplus \sequence {0,r_1,0,\ldots} \oplus \sequence {0,0,r_2,0,\ldots} \oplus \cdots \oplus \sequence {0,\ldots,0,r_n,0,\ldots}\)
\(\ds \) \(=\) \(\ds \sequence {r_0,r_1,r_2,\ldots,r_n,0,\ldots}\)
\(\ds \) \(=\) \(\ds \sequence {0,0,\ldots}\)

Therefore:

$r_0 = \cdots = r_n = 0$

$\blacksquare$


Also see