Multiplicative Inverse in Monoid of Integers Modulo m

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {\Z_m, \times_m}$ be the multiplicative monoid of integers modulo $m$.


Then:

$\eqclass k m \in \Z_m$ has an inverse in $\struct {\Z_m, \times_m}$

if and only if:

$k \perp m$


Proof

First, suppose $k \perp m$.

That is:

$\gcd \set {k, m} = 1$

By Bézout's Identity:

$\exists u, v \in \Z: u k + v m = 1$

Thus:

$\eqclass {u k + v m} m = \eqclass {u k} m = \eqclass u m \eqclass k m = \eqclass 1 m$

Thus:

$\eqclass u m$ is an inverse of $\eqclass k m$


Suppose that:

$\exists u \in \Z: \eqclass u m \eqclass k m = \eqclass {u k} m = 1$

Then:

$u k \equiv 1 \pmod m$

and:

$\exists v \in \Z: u k + v m = 1$

Thus from Bézout's Identity, $k \perp m$.

$\blacksquare$


Sources