Multiplicative Persistence/Examples/277,777,788,888,899

From ProofWiki
Jump to navigation Jump to search

Examples of Multiplicative Persistence

$277 \, 777 \, 788 \, 888 \, 899$ is the smallest positive integer which has a multiplicative persistence of $11$.


Proof

We have:

\(\text {(1)}: \quad\) \(\ds 2 \times 7^6 \times 8^6 \times 9^2\) \(=\) \(\ds 2 \times 117 \, 649 \times 262 \, 144 \times 81\)
\(\ds \) \(=\) \(\ds 4 \, 996 \, 238 \, 671 \, 872\)
\(\text {(2)}: \quad\) \(\ds 4 \times 9^2 \times 6^2 \times 2^2 \times 3 \times 8^2 \times 7^2 \times 1\) \(=\) \(\ds 438 \, 939 \, 648\)
\(\text {(3)}: \quad\) \(\ds 4^2 \times 3^2 \times 8^2 \times 9^2 \times 6\) \(=\) \(\ds 4 \, 478 \, 976\)
\(\text {(4)}: \quad\) \(\ds 4^2 \times 7^2 \times 8 \times 9 \times 6\) \(=\) \(\ds 338 \, 688\)
\(\text {(5)}: \quad\) \(\ds 3^2 \times 8^3 \times 6\) \(=\) \(\ds 27 \, 648\)
\(\text {(6)}: \quad\) \(\ds 2 \times 7 \times 6 \times 4 \times 8\) \(=\) \(\ds 2688\)
\(\text {(7)}: \quad\) \(\ds 2 \times 6 \times 8^2\) \(=\) \(\ds 768\)
\(\text {(8)}: \quad\) \(\ds 7 \times 6 \times 8\) \(=\) \(\ds 336\)
\(\text {(9)}: \quad\) \(\ds 3 \times 3 \times 6\) \(=\) \(\ds 54\)
\(\text {(10)}: \quad\) \(\ds 5 \times 4\) \(=\) \(\ds 20\)
\(\text {(11)}: \quad\) \(\ds 2 \times 0\) \(=\) \(\ds 0\)

The fact that it is the smallest can be demonstrated by brute-force methods.

$\blacksquare$


Sources