NAND is not Associative/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$p \uparrow \paren {q \uparrow r} \not \vdash \paren {p \uparrow q} \uparrow r$


Proof

By the tableau method of natural deduction:

$\neg \paren {\paren {p \uparrow q} \uparrow r \implies p \uparrow \paren {q \uparrow r} } $
Line Pool Formula Rule Depends upon Notes
1 1 $\paren {p \uparrow q} \uparrow r \implies p \uparrow \paren {q \uparrow r}$ Assumption (None)
2 2 $p \land \neg r$ Assumption (None)
3 2 $p$ Rule of Simplification: $\land \EE_1$ 2
4 2 $\neg r$ Rule of Simplification: $\land \EE_2$ 2
5 2 $\paren {\neg q} \lor \paren {\neg r}$ Rule of Addition: $\lor \II_2$ 4
6 2 $\neg \paren {q \land r}$ Sequent Introduction 5 De Morgan's Laws: Disjunction of Negations
7 2 $q \uparrow r$ Sequent Introduction 6 Definition of Logical NAND
8 2 $p \land \paren {q \uparrow r}$ Rule of Conjunction: $\land \II$ 3, 7
9 2 $\neg \neg \paren {p \land \paren {q \uparrow r} }$ Double Negation Introduction: $\neg \neg \II$ 8
10 2 $\neg \paren {p \uparrow \paren {q \uparrow r} }$ Sequent Introduction 9 Definition of Logical NAND
11 2 $\paren {\neg \paren {p \uparrow q} } \lor \paren {\neg r}$ Rule of Addition: $\lor \II_2$ 4
12 2 $\neg \paren {\paren {p \uparrow q} \land r}$ Sequent Introduction 11 De Morgan's Laws: Disjunction of Negations
13 2 $\paren {p \uparrow q} \uparrow r$ Sequent Introduction 12 Definition of Logical NAND
14 2 $\neg \neg \paren {\paren {p \uparrow q} \uparrow r}$ Double Negation Introduction: $\neg \neg \II$ 13
15 2 $\neg \neg \paren {\paren {p \uparrow q} \uparrow r} \land \neg \paren {p \uparrow \paren {q \uparrow r} }$ Rule of Conjunction: $\land \II$ 13, 10
16 2 $\neg \paren {\neg \paren {\paren {p \uparrow q} \uparrow r} \lor \paren {p \uparrow \paren {q \uparrow r} } }$ Sequent Introduction 15 De Morgan's Laws: Conjunction of Negations
17 2 $\neg \paren {\paren {p \uparrow q} \uparrow r \implies p \uparrow \paren {q \uparrow r} }$ Sequent Introduction 16 Disjunction and Conditional
18 1, 2 $\bot$ Principle of Non-Contradiction: $\neg \EE$ 1, 17

Taking $p = \top$, $r = \bot$, we find $\vdash p \land \neg r$, and conclude our initial assumption was false.

$\blacksquare$