NOR is not Associative

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\downarrow$ signify the NOR operation.


Then there exist propositions $p,q,r$ such that:

$p \downarrow \paren {q \downarrow r} \not \vdash \paren {p \downarrow q} \downarrow r$

That is, NOR is not associative.


Proof 1

By the tableau method of natural deduction:

$\neg \paren {p \downarrow \paren {q \downarrow r} \implies \paren {p \downarrow q} \downarrow r} $
Line Pool Formula Rule Depends upon Notes
1 1 $\neg p \land r$ Assumption (None)
2 1 $\neg p$ Rule of Simplification: $\land \EE_1$ 1
3 1 $r$ Rule of Simplification: $\land \EE_2$ 1
4 1 $q \lor r$ Rule of Addition: $\lor \II_2$ 3
5 1 $\neg \neg \paren {q \lor r}$ Double Negation Introduction: $\neg \neg \II$ 4
6 1 $\neg \paren {q \downarrow r}$ Sequent Introduction 5 Definition of Logical NOR
7 1 $\neg p \land \neg \paren {q \downarrow r}$ Rule of Conjunction: $\land \II$ 2, 6
8 1 $\neg \paren {p \lor \paren {q \downarrow r} }$ Sequent Introduction 7 De Morgan's Laws: Conjunction of Negations
9 1 $p \downarrow \paren {q \downarrow r}$ Sequent Introduction 8 Definition of Logical NOR
10 1 $\paren {p \downarrow q} \lor r$ Rule of Addition: $\lor \II_2$ 3
11 1 $\neg \neg \paren {\paren {p \downarrow q} \lor r}$ Double Negation Introduction: $\neg \neg \II$ 10
12 1 $\neg \paren {\paren {p \downarrow q} \downarrow r}$ Sequent Introduction 11 Definition of Logical NOR
13 1 $\neg \neg \paren {p \downarrow \paren {q \downarrow r} }$ Double Negation Introduction: $\neg \neg \II$ 9
14 1 $\paren {\neg \neg \paren {p \downarrow \paren {q \downarrow r} } } \land \paren {\neg \paren {\paren {p \downarrow q} \downarrow r} }$ Rule of Conjunction: $\land \II$ 13, 12
15 1 $\neg \paren {\neg \paren {p \downarrow \paren {q \downarrow r} } \lor \paren {\paren {p \downarrow q} \downarrow r} }$ Sequent Introduction 14 De Morgan's Laws: Conjunction of Negations
16 1 $\neg \paren {p \downarrow \paren {q \downarrow r} \implies \paren {p \downarrow q} \downarrow r}$ Sequent Introduction 15 Rule of Material Implication

Taking $p = \bot$ and $r = \top$, we have $\vdash \neg p \land r$, discharging the last assumption.

Hence the result.

$\blacksquare$


Proof by Truth Table

Apply the Method of Truth Tables:

$\begin{array}{|ccccc||ccccc|} \hline

p & \downarrow & (q & \downarrow & r) & (p & \downarrow & q) & \downarrow & r \\ \hline \F & \F & \F & \T & \F & \F & \T & \F & \F & \F \\ \F & \T & \F & \F & \T & \F & \T & \F & \F & \T \\ \F & \T & \T & \F & \F & \F & \F & \T & \T & \F \\ \F & \T & \T & \F & \T & \F & \F & \T & \F & \T \\ \T & \F & \F & \T & \F & \T & \F & \F & \T & \F \\ \T & \F & \F & \F & \T & \T & \F & \F & \F & \T \\ \T & \F & \T & \F & \F & \T & \F & \T & \T & \F \\ \T & \F & \T & \F & \T & \T & \F & \T & \F & \T \\ \hline \end{array}$

As can be seen by inspection, the truth values under the main connectives do not match for all boolean interpretations.

$\blacksquare$


Also see


Sources