Newton-Girard Identities/Lemma 1
Jump to navigation
Jump to search
Theorem
Let $a, b \in \Z$ be integers such that $b \ge a$.
Let $U$ be a set of $n = b - a + 1$ numbers $\set {x_a, x_{a + 1}, \ldots, x_b}$.
Let $m \in \Z_{>0}$ be a (strictly) positive integer.
Let:
\(\ds h_m\) | \(=\) | \(\ds \sum_{a \mathop \le j_1 \mathop < \cdots \mathop < j_m \mathop \le b} \left({\prod_{k \mathop = 1}^m x_{j_k} }\right)\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{a \mathop \le j_1 \mathop < \cdots \mathop < j_m \mathop \le b} x_{j_1} \cdots x_{j_m}\) |
That is, $h_m$ is the product of all $m$-tuples of elements of $U$ taken $m$ at a time, excluding repetitions.
Let $\map G z$ be the generating function for the sequence $\sequence {h_m}$.
Then:
\(\ds \map G z\) | \(=\) | \(\ds \prod_{k \mathop = a}^b \paren {1 + x_k z}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {1 + x_a z} \paren {1 + x_{a + 1} z} \cdots \paren {1 + x_b z}\) |
Proof
This is an instance of Generating Function for Elementary Symmetric Function.
$\blacksquare$