Non-Equivalence as Disjunction of Conjunctions/Formulation 1/Reverse Implication

From ProofWiki
Jump to navigation Jump to search

Theorem

$\left({\neg p \land q}\right) \lor \left({p \land \neg q}\right) \vdash \neg \left ({p \iff q}\right)$


Proof

By the tableau method of natural deduction:

$\paren {\neg p \land q} \lor \paren {p \land \neg q} \vdash \neg \paren {p \iff q} $
Line Pool Formula Rule Depends upon Notes
1 1 $\paren {\neg p \land q} \lor \paren {p \land \neg q}$ Premise (None)
2 1 $\paren {p \land \neg q} \lor \paren {\neg p \land q}$ Sequent Introduction 1 Disjunction is Commutative
3 1 $\paren {p \land \neg q} \lor \paren {q \land \neg p}$ Sequent Introduction 2 Conjunction is Commutative
4 1 $\paren {\neg \neg p \land \neg q} \lor \paren {\neg \neg q \land \neg p}$ Double Negation Introduction: $\neg \neg \II$ 3
5 1 $\neg \paren {\neg p \lor q} \lor \neg \paren {\neg q \lor p}$ Sequent Introduction 4 De Morgan's Laws: Conjunction of Negations
6 1 $\neg \paren {\paren {\neg p \lor q} \land \paren {\neg q \lor p} }$ Sequent Introduction 5 De Morgan's Laws: Disjunction of Negations
7 1 $\neg \paren {\paren {p \implies q} \land \paren {q \implies p} }$ Sequent Introduction 6 Rule of Material Implication (twice)
8 1 $\neg \paren {p \iff q}$ Sequent Introduction 7 Rule of Material Equivalence

$\blacksquare$