Open Ball contains Strictly Smaller Closed Ball

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $M = \struct {A, d}$ be a metric space.

Let $a \in A$.

Let $\epsilon, \delta \in \R_{>0}$ such that $\epsilon < \delta$.

Let $\map {B^-_\epsilon} a$ be the closed $\epsilon$-ball on $a$.

Let $\map {B_\delta} a$ be the open $\delta$-ball on $a$.


Then:

$\map {B^-_\epsilon} a \subseteq \map {B_\delta} a$


Proof

\(\ds x\) \(\in\) \(\ds \map {B^-_\epsilon} a\)
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds \map \cl {\map {B_\epsilon} a}\) Definition of Closed Ball of Metric Space
\(\ds \leadsto \ \ \) \(\ds \map d {x, a}\) \(\le\) \(\ds \epsilon\) Closure of Open Ball in Metric Space
\(\ds \leadsto \ \ \) \(\ds \map d {x, a}\) \(<\) \(\ds \delta\) As $\epsilon < \delta$
\(\ds \leadsto \ \ \) \(\ds x\) \(\in\) \(\ds \map {B_\delta} a\) Definition of Open Ball of Metric Space

By definition of subset:

$\map {B^-_\epsilon} a \subseteq \map {B_\delta} a$

$\blacksquare$