Order is Preserved on Positive Reals by Squaring/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$x < y \iff x^2 < y^2$


Proof

Necessary Condition

Assume $x < y$.

Then:

\(\ds x < y\) \(\implies\) \(\ds x \times x < x \times y\) Real Number Ordering is Compatible with Multiplication
\(\ds x < y\) \(\implies\) \(\ds x \times y < y \times y\) Real Number Ordering is Compatible with Multiplication
\(\ds \) \(\leadsto\) \(\ds x^2 < y^2\) Real Number Ordering is Transitive

So:

$x < y \implies x^2 < y^2$

$\Box$


Sufficient Condition

Assume $x^2 < y^2$.

Then:

\(\ds x^2\) \(<\) \(\ds y^2\)
\(\ds \leadsto \ \ \) \(\ds 0\) \(<\) \(\ds y^2 - x^2\) Real Number Ordering is Compatible with Addition
\(\ds \leadsto \ \ \) \(\ds \paren {y - x} \paren {y + x}\) \(>\) \(\ds 0\) Difference of Two Squares
\(\ds \leadsto \ \ \) \(\ds \paren {y - x} \paren {y + x} \paren {y + x}^{-1}\) \(>\) \(\ds 0 \times \paren {y + x}^{-1}\) as $x + y > 0$
\(\ds \leadsto \ \ \) \(\ds y - x\) \(>\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds x\) \(<\) \(\ds y\)

So:

$x^2 < y^2 \implies x < y$

$\blacksquare$


Sources