Order is Preserved on Positive Reals by Squaring/Proof 1
Jump to navigation
Jump to search
Theorem
- $x < y \iff x^2 < y^2$
Proof
Necessary Condition
Assume $x < y$.
Then:
\(\ds x < y\) | \(\implies\) | \(\ds x \times x < x \times y\) | Real Number Ordering is Compatible with Multiplication | |||||||||||
\(\ds x < y\) | \(\implies\) | \(\ds x \times y < y \times y\) | Real Number Ordering is Compatible with Multiplication | |||||||||||
\(\ds \) | \(\leadsto\) | \(\ds x^2 < y^2\) | Transitive Law |
So:
- $x < y \implies x^2 < y^2$
$\Box$
Sufficient Condition
Assume $x^2 < y^2$.
Then:
\(\ds x^2\) | \(<\) | \(\ds y^2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 0\) | \(<\) | \(\ds y^2 - x^2\) | Real Number Ordering is Compatible with Addition | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {y - x} \paren {y + x}\) | \(>\) | \(\ds 0\) | Difference of Two Squares | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {y - x} \paren {y + x} \paren {y + x}^{-1}\) | \(>\) | \(\ds 0 \times \paren {y + x}^{-1}\) | as $x + y > 0$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds y - x\) | \(>\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(<\) | \(\ds y\) |
So:
- $x^2 < y^2 \implies x < y$
$\blacksquare$
Sources
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 1$: Real Numbers: $\S 1.6$: Example