Order of Sum of Reciprocal of Primes
Theorem
Let $x \ge 2$ be a real number.
We have:
- $\ds \sum_{p \mathop \le x} \frac 1 p = \map \ln {\ln x} + \map \OO 1$
where:
- $\ds \sum_{p \mathop \le x}$ sums over the primes less than or equal to $x$
- $\OO$ is big-$\OO$ notation.
Proof
We have:
\(\ds \int_p^x \frac 1 {t \ln^2 t} \rd t\) | \(=\) | \(\ds \int_{\ln p}^{\ln x} \frac {e^u} {e^u u^2} \rd u\) | substituting $t \mapsto e^u$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_{\ln p}^{\ln x} \frac 1 {u^2} \rd u\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \intlimits {-\frac 1 u} {\ln p} {\ln x}\) | Primitive of Power, Fundamental Theorem of Calculus | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {\ln p} - \frac 1 {\ln x}\) |
So we can write:
\(\ds \sum_{p \mathop \le x} \frac 1 p\) | \(=\) | \(\ds \sum_{p \mathop \le x} \paren {\frac {\ln p} p \times \frac 1 {\ln p} }\) | since $p \ge 2$, $\ln p \ne 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{p \mathop \le x} \frac {\ln p} p \paren {\int_p^x \frac 1 {t \ln^2 t} \rd t + \frac 1 {\ln x} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{p \mathop \le x} \frac {\ln p} p \paren {\int_p^x \frac 1 {t \ln^2 t} \rd t} + \frac 1 {\ln x} \sum_{p \mathop \le x} \frac {\ln p} p\) |
We look to interchange summation and integral in our first term.
Lemma
- $\ds \sum_{p \mathop \le x} \frac {\ln p} p \paren {\int_p^x \frac 1 {t \ln^2 t} \rd t} = \int_2^x \frac 1 {t \ln^2 t} \paren {\sum_{p \mathop \le t} \frac {\ln p} p} \rd t$
$\Box$
From Order of Sum over Primes of $\dfrac {\ln p} p$, there exists a real function $R : \hointr 2 \infty \to \R$ such that:
- $\ds \sum_{p \mathop \le x} \frac {\ln p} p = \ln x + \map R x$
with $\map R x = \map \OO 1$.
We then have:
- $\ds \int_2^x \frac 1 {t \ln^2 t} \paren {\sum_{p \le t} \frac {\ln p} p} \rd t + \frac 1 {\ln x} \sum_{p \mathop \le x} \frac {\ln p} p = \int_2^x \frac {\ln t + \map R t} {t \ln^2 t} \rd t + 1 + \frac {\map R x} {\ln x}$
We have, by Linear Combination of Definite Integrals:
- $\ds \int_2^x \frac {\ln t + \map R t} {t \ln^2 t} \rd t = \int_2^x \frac 1 {t \ln t} \rd t + \int_2^x \frac {\map R t} {t \ln^2 t} \rd t$
Evaluating the first term:
\(\ds \int_2^x \frac 1 {t \ln t} \rd t\) | \(=\) | \(\ds \int_{\ln 2}^{\ln x} \frac {e^u} {e^u \ln e^u} \rd u\) | substituting $t \mapsto e^u$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \intlimits {\ln u} {\ln 2} {\ln x}\) | Primitive of Reciprocal, Fundamental Theorem of Calculus | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \ln {\ln x} - \map \ln {\ln 2}\) |
We now have:
- $\ds \sum_{p \mathop \le x} \frac {\ln p} p = \map \ln {\ln x} + \paren {\int_2^x \frac {\map R t} {t \ln^2 t} \rd t + 1 + \frac {\map R x} {\ln x} - \map \ln {\ln 2} }$
We aim to show that the bracketed term is $\map \OO 1$.
As shown in Order of Sum over Primes of $\dfrac {\ln p} p$, there exists a real constant $C > 0$ such that:
- $\size {\map R t} \le C$
for $t \ge 2$.
Then:
\(\ds \size {\int_2^x \frac {\map R t} {t \ln^2 t} \rd t}\) | \(\le\) | \(\ds C \int_2^x \frac 1 {t \ln^2 t} \rd t\) | Relative Sizes of Definite Integrals | |||||||||||
\(\ds \) | \(=\) | \(\ds C \paren {\frac 1 {\ln 2} - \frac 1 {\ln x} }\) | using the previous integral result with $p = 2$ | |||||||||||
\(\ds \) | \(\le\) | \(\ds \frac C {\ln 2}\) | since $\dfrac 1 {\ln x} \ge 0$ for $x > 1$ |
So:
- $\ds \int_2^x \frac {\map R t} {t \ln^2 t} \rd t = \map \OO 1$
We also have:
- $\ds \size {\frac {\map R x} {\ln x} } \le \frac C {\ln x}$
From Logarithm is Strictly Increasing, we then have:
- $\ds \frac 1 {\ln x} \le \frac 1 {\ln 2}$
for $x \ge 2$, and so:
- $\ds \size {\frac {\map R x} {\ln x} } \le \frac C {\ln 2}$
for $x \ge 2$.
So:
- $\ds \frac {\map R x} {\ln x} = \map \OO 1$
Clearly:
- $1 - \map \ln {\ln 2} = \map \OO 1$
So from Sum of Big-$\OO$ Estimates, we have:
- $\ds \int_2^x \frac {\map R t} {t \ln^2 t} \rd t + 1 + \frac {\map R x} {\ln x} - \map \ln {\ln 2} = \map \OO 1$
giving:
- $\ds \sum_{p \mathop \le x} \frac {\ln p} p = \map \ln {\ln x} + \map \OO 1$
$\blacksquare$