Orderings on Set with 3 Elements

From ProofWiki
Jump to navigation Jump to search

Examples of Orderings

Let $S = \set {a, b, c}$ be an arbitrary set with $3$ elements.

The following are all the orderings that can be applied to $S$, grouped into isomorphism classes.


In the below, $\tuple {x, y}$ indicates that $x \preccurlyeq y$ for the ordering $\preccurlyeq$ under consideration.


Trivial Ordering

\(\ds \preccurlyeq_0: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c} }\) \(\) \(\ds \)


This is its Hasse diagram:

Ordering-3-Elements-Trivial.png

$2$ Elements Ordered

\(\ds \preccurlyeq_1: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {a, b} }\) \(:\) \(\ds a \preccurlyeq_1 b\)
\(\ds \preccurlyeq_2: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {a, c} }\) \(:\) \(\ds a \preccurlyeq_2 c\)
\(\ds \preccurlyeq_3: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {b, c} }\) \(:\) \(\ds b \preccurlyeq_3 c\)
\(\ds \preccurlyeq_4: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {b, a} }\) \(:\) \(\ds b \preccurlyeq_4 a\)
\(\ds \preccurlyeq_5: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {c, a} }\) \(:\) \(\ds c \preccurlyeq_5 a\)
\(\ds \preccurlyeq_6: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {c, b} }\) \(:\) \(\ds c \preccurlyeq_6 b\)


This is its Hasse diagram:

Ordering-3-Elements-2-Ordered.png

where the labels can be arbitrary.


$2$ Maximal Elements

\(\ds \preccurlyeq_7: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {a, b}, \tuple {a, c} }\) \(:\) \(\ds a \preccurlyeq_7 b, c\)
\(\ds \preccurlyeq_8: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {b, a}, \tuple {b, c} }\) \(:\) \(\ds b \preccurlyeq_8 a, c\)
\(\ds \preccurlyeq_9: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {c, a}, \tuple {c, b} }\) \(:\) \(\ds c \preccurlyeq_9 a, b\)


This is its Hasse diagram:

Ordering-3-Elements-2-Maximal.png

where the labels can be arbitrary.


$2$ Minimal Elements

\(\ds \preccurlyeq_{10}: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {a, c}, \tuple {b, c} }\) \(:\) \(\ds a, b \preccurlyeq_{10} c\)
\(\ds \preccurlyeq_{11}: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {a, b}, \tuple {c, b} }\) \(:\) \(\ds a, c \preccurlyeq_{11} b\)
\(\ds \preccurlyeq_{12}: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {b, a}, \tuple {c, a} }\) \(:\) \(\ds b, c \preccurlyeq_{12} a\)


This is its Hasse diagram:

Ordering-3-Elements-2-Minimal.png

where the labels can be arbitrary.


Total Orderings

\(\ds \preccurlyeq_{13}: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {a, b}, \tuple {b, c}, \tuple {a, c} }\) \(:\) \(\ds a \preccurlyeq_{13} b \preccurlyeq_{13} c\)
\(\ds \preccurlyeq_{14}: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {a, c}, \tuple {c, b}, \tuple {a, b} }\) \(:\) \(\ds a \preccurlyeq_{14} c \preccurlyeq_{14} b\)
\(\ds \preccurlyeq_{15}: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {b, a}, \tuple {a, c}, \tuple {b, c} }\) \(:\) \(\ds b \preccurlyeq_{15} a \preccurlyeq_{15} c\)
\(\ds \preccurlyeq_{16}: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {b, c}, \tuple {c, a}, \tuple {b, a} }\) \(:\) \(\ds b \preccurlyeq_{16} c \preccurlyeq_{16} a\)
\(\ds \preccurlyeq_{17}: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {c, a}, \tuple {a, b}, \tuple {c, b} }\) \(:\) \(\ds c \preccurlyeq_{17} a \preccurlyeq_{17} b\)
\(\ds \preccurlyeq_{18}: \, \) \(\ds \set {\tuple {a, a}, \tuple {b, b}, \tuple {c, c}, \tuple {c, b}, \tuple {b, a}, \tuple {c, a} }\) \(:\) \(\ds c \preccurlyeq_{18} b \preccurlyeq_{18} a\)


This is its Hasse diagram:

Ordering-3-Elements-Total.png

where the labels can be arbitrary.


These orderings are total orderings.

From Totally Ordered Set is Lattice, they are also lattice orderings.


Summary

There are $19$ different orderings that can be applied to $S$, grouped into $5$ isomorphism classes.

Exactly one of those isomorphism classes is of a lattice ordering.

It contains $6$ such orderings.


Hence for a set with $3$ elements, there are $6$ possible lattice orderings that can be applied to that set.

$\blacksquare$


Sources