Ordinal Membership is Trichotomy
Jump to navigation
Jump to search
Theorem
Let $\alpha$ and $\beta$ be ordinals.
Then:
- $\paren {\alpha = \beta} \lor \paren {\alpha \in \beta} \lor \paren {\beta \in \alpha}$
where $\lor$ denotes logical or.
Corollary
Let $\alpha$ be an ordinal.
Let $x, y \in \alpha$ such that $x \ne y$.
Then either:
- $x \in y$
or:
- $y \in x$
Proof 1
From Class of All Ordinals is Well-Ordered by Subset Relation, $\On$ is a nest.
Hence:
- $\forall \alpha, \beta \in \On: \paren {\alpha \subsetneqq \beta} \lor \paren {\beta \subsetneqq \alpha} \lor \paren {\alpha = \beta}$
From Transitive Set is Proper Subset of Ordinal iff Element of Ordinal, this is equivalent to:
- $\forall \alpha, \beta \in \On: \paren {\alpha \in \beta} \lor \paren {\beta \in \alpha} \lor \paren {\alpha = \beta}$
Hence the result.
$\blacksquare$
Proof 2
By Relation between Two Ordinals, it follows that:
- $\paren {\alpha = \beta} \lor \paren {\alpha \subset \beta} \lor \paren {\beta \subset \alpha}$
By Transitive Set is Proper Subset of Ordinal iff Element of Ordinal, the result follows.
$\blacksquare$