Orthocomplement equal to Orthocomplement of Linear Span
Jump to navigation
Jump to search
Theorem
Let $\GF \in \set {\R, \C}$.
Let $\struct {V, \innerprod \cdot \cdot}$ be an inner product space over $\GF$.
Let $S \subseteq V$ be non-empty.
Then:
- $S^\bot = \paren {\map \span S}^\bot$
where $\bot$ denotes orthocomplement.
Proof
From Orthocomplement Reverses Subset, we have:
- $\paren {\map \span S}^\bot \subseteq S^\bot$
Conversely let $y \in S^\bot$.
Let $x \in \map \span S$.
From the definition of the linear span there exists $x_1, \ldots, x_n \in S$ and $\alpha_1, \ldots, \alpha_n \in \GF$ such that:
- $\ds x = \sum_{j \mathop = 1}^n \alpha_j x_j$
We then have:
\(\ds \innerprod x y\) | \(=\) | \(\ds \innerprod {\sum_{j \mathop = 1}^n \alpha_j x_j} y\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{j \mathop = 1}^n \alpha_j \innerprod {x_j} y\) | linearity in first argument | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | since $x_j \in S$ for each $j$, we have $\innerprod {x_j} y = 0$ |
So $\innerprod x y = 0$ for all $x \in \map \span S$.
So $y \in \paren {\map \span S}^\bot$.
Hence we have $S^\bot \subseteq \paren {\map \span S}^\bot$.
We conclude:
- $S^\bot = \paren {\map \span S}^\bot$
$\blacksquare$