P-adic Norm satisfies Non-Archimedean Norm Axioms

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $p$ be a prime number.

Let $\struct {\Q_p, \norm {\,\cdot\,}_p}$ be the $p$-adic numbers with $p$-adic norm $\norm {\,\cdot\,}_p : \Q_p \to \R_{\ge 0}$.


Then $\norm {\,\cdot\,}_p$ satisfies the non-Archimedean norm axioms:

\((\text N 1)\)   $:$   Positive Definiteness:      \(\ds \forall x \in \Q_p:\)    \(\ds \norm x_p = 0 \)   \(\ds \iff \)   \(\ds x = 0 \)      
\((\text N 2)\)   $:$   Multiplicativity:      \(\ds \forall x, y \in \Q_p:\)    \(\ds \norm {x \cdot y}_p \)   \(\ds = \)   \(\ds \norm x_p \times \norm y_p \)      
\((\text N 4)\)   $:$   Ultrametric Inequality:      \(\ds \forall x, y \in Q_p:\)    \(\ds \norm {x + y}_p \)   \(\ds \le \)   \(\ds \max \set {\norm x_p, \norm y_p} \)      


Proof

From P-adic Numbers form Non-Archimedean Valued Field:

$\struct {\Q_p, \norm {\,\cdot\,}_p}$ is a non-Archimedean norm

$\blacksquare$