Partial Sum Congruent to P-adic Integer Modulo Power of p

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\Z_p$ be the $p$-adic integers for some prime $p$.

Let $a \in \Z_p$.

Let $a = \ds \sum_{j=0}^\infty d_jp^j$ be the $p$-adic expansion of $a$

For all $n \in \N$, let $a_n = \ds \sum_{j=0}^n d_jp^j$ be the n-th partial sum of the $p$-adic expansion of $a$


Then:

$\forall n \in \N : a_n \equiv a \pmod{p^{n+1}\Z_p}$

where $a_n \equiv a \pmod{p^{n+1}\Z_p}$ denotes congruence modulo the ideal $\Z_p$.

Proof

We have:

\(\ds \forall n \in \N: \, \) \(\ds a - a_n\) \(=\) \(\ds \sum_{j = 0}^\infty d_j p^j - \sum_{j = 0}^n d_j p_j\) Hypothesis
\(\ds \) \(=\) \(\ds \sum_{j = n+1}^\infty d_j p^j\) Removing first $n$ terms from the series
\(\ds \) \(=\) \(\ds p^{n+1} \sum_{j = 0}^\infty d_{j+n+1} p^j\) Extract common factor from the series
\(\ds \) \(\in\) \(\ds p^{k+1} \Z_p\) Definition of P-adic Integer
\(\ds \leadsto \ \ \) \(\ds \forall k \in \N: \, \) \(\ds a\) \(\equiv\) \(\ds a_k \pmod {p^{k+1}\Z_p}\) Definition of Congruence Modulo an Ideal

$\blacksquare$