Polydivisible Number/Examples/3,608,528,850,368,400,786,036,725
Jump to navigation
Jump to search
Theorem
The largest polydivisible number has $25$ digits:
- $3 \, 608 \, 528 \, 850 \, 368 \, 400 \, 786 \, 036 \, 725$
Proof
\(\ds 3\) | \(=\) | \(\ds 1 \times 3\) | ||||||||||||
\(\ds 36\) | \(=\) | \(\ds 2 \times 18\) | ||||||||||||
\(\ds 360\) | \(=\) | \(\ds 3 \times 120\) | ||||||||||||
\(\ds 3608\) | \(=\) | \(\ds 4 \times 902\) | ||||||||||||
\(\ds 36 \, 085\) | \(=\) | \(\ds 5 \times 7217\) | ||||||||||||
\(\ds 360 \, 852\) | \(=\) | \(\ds 6 \times 60 \, 142\) | ||||||||||||
\(\ds 3 \, 608 \, 528\) | \(=\) | \(\ds 7 \times 515 \, 504\) | ||||||||||||
\(\ds 36 \, 085 \, 288\) | \(=\) | \(\ds 8 \times 4 \, 510 \, 661\) | ||||||||||||
\(\ds 360 \, 852 \, 885\) | \(=\) | \(\ds 9 \times 40 \, 094 \, 765\) | ||||||||||||
\(\ds 3 \, 608 \, 528 \, 850\) | \(=\) | \(\ds 10 \times 360 \, 852 \, 885\) | ||||||||||||
\(\ds 36 \, 085 \, 288 \, 503\) | \(=\) | \(\ds 11 \times 3 \, 280 \, 480 \, 773\) | ||||||||||||
\(\ds 360 \, 852 \, 885 \, 036\) | \(=\) | \(\ds 12 \times 30 \, 071 \, 073 \, 753\) | ||||||||||||
\(\ds 3 \, 608 \, 528 \, 850 \, 368\) | \(=\) | \(\ds 13 \times 277 \, 579 \, 142 \, 336\) | ||||||||||||
\(\ds 36 \, 085 \, 288 \, 503 \, 684\) | \(=\) | \(\ds 14 \times 2 \, 577 \, 520 \, 607 \, 406\) | ||||||||||||
\(\ds 360 \, 852 \, 885 \, 036 \, 840\) | \(=\) | \(\ds 15 \times 24 \, 056 \, 859 \, 002 \, 456\) | ||||||||||||
\(\ds 3 \, 608 \, 528 \, 850 \, 368 \, 400\) | \(=\) | \(\ds 16 \times 225 \, 533 \, 053 \, 148 \, 025\) | ||||||||||||
\(\ds 36 \, 085 \, 288 \, 503 \, 684 \, 007\) | \(=\) | \(\ds 17 \times 2 \, 122 \, 664 \, 029 \, 628 \, 471\) | ||||||||||||
\(\ds 360 \, 852 \, 885 \, 036 \, 840 \, 078\) | \(=\) | \(\ds 18 \times 20 \, 047 \, 382 \, 502 \, 046 \, 671\) | ||||||||||||
\(\ds 3 \, 608 \, 528 \, 850 \, 368 \, 400 \, 786\) | \(=\) | \(\ds 19 \times 189 \, 922 \, 571 \, 072 \, 021 \, 094\) | ||||||||||||
\(\ds 36 \, 085 \, 288 \, 503 \, 684 \, 007 \, 860\) | \(=\) | \(\ds 20 \times 1 \, 804 \, 264 \, 425 \, 184 \, 200 \, 393\) | ||||||||||||
\(\ds 360 \, 852 \, 885 \, 036 \, 840 \, 078 \, 603\) | \(=\) | \(\ds 21 \times 17 \, 183 \, 470 \, 716 \, 040 \, 003 \, 743\) | ||||||||||||
\(\ds 3 \, 608 \, 528 \, 850 \, 368 \, 400 \, 786 \, 036\) | \(=\) | \(\ds 22 \times 164 \, 024 \, 038 \, 653 \, 109 \, 126 \, 638\) | ||||||||||||
\(\ds 36 \, 085 \, 288 \, 503 \, 684 \, 007 \, 860 \, 367\) | \(=\) | \(\ds 23 \times 1 \, 568 \, 925 \, 587 \, 116 \, 695 \, 993 \, 929\) | ||||||||||||
\(\ds 360 \, 852 \, 885 \, 036 \, 840 \, 078 \, 603 \, 672\) | \(=\) | \(\ds 24 \times 15 \, 035 \, 536 \, 876 \, 535 \, 003 \, 275 \, 153\) | ||||||||||||
\(\ds 3 \, 608 \, 528 \, 850 \, 368 \, 400 \, 786 \, 036 \, 725\) | \(=\) | \(\ds 25 \times 144 \, 341 \, 154 \, 014 \, 736 \, 031 \, 441 \, 469\) |
From No Polydivisible Number with 26 Digits Exists, there are no polydivisible numbers with more digits.
![]() | This theorem requires a proof. In particular: It remains to be shown there is no larger one with $25$ digits. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by crafting such a proof. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{ProofWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Also see
Sources
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $3,608,528,850,368,400,786,036,725$