Polylogarithm of Square

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map {\Li_s} z + \map {\Li_s} {-z} = 2^{1 - s} \map {\Li_s} {z^2}$

where $\Li_s$ denotes the polylogarithm.


Proof

\(\ds \map {\Li_s} z + \map {\Li_s} {-z}\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \frac {z^n} {n^s} + \sum_{n \mathop = 1}^\infty \frac {\paren {-z}^n} {n^s}\) Definition of Polylogarithm
\(\ds \) \(=\) \(\ds \paren {z + \frac {z^2} {2^s} + \frac {z^3} {3^s} + \frac {z^4} {4^s} + \frac {z^5} {5^s} + \frac {z^6} {6^s} + \cdots} + \paren {-z + \frac {z^2} {2^s} - \frac {z^3} {3^s} + \frac {z^4} {4^s} - \frac {z^5} {5^s} + \frac {z^6} {6^s} + \cdots}\)
\(\ds \) \(=\) \(\ds 2 \paren {\frac {z^2} {2^s} + \frac {z^4} {4^s} + \frac {z^6} {6^s} + \cdots}\) odd terms cancel, even terms double
\(\ds \) \(=\) \(\ds \frac 2 {2^s} \paren {\frac {z^2} {1^s} + \frac {z^4} {2^s} + \frac {z^6} {3^s} + \cdots}\) factoring out $2^s$
\(\ds \) \(=\) \(\ds 2^{1 - s} \sum_{n \mathop = 1}^\infty \frac {\paren {z^2}^n} {n^s}\)
\(\ds \) \(=\) \(\ds 2^{1 - s} \map {\Li_s} {z^2}\) Definition of Polylogarithm

$\blacksquare$