Power Function on Base between Zero and One is Strictly Decreasing/Rational Number

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a \in \R$ be a real number such that $0 < a < 1$.

Let $f: \Q \to \R$ be the real-valued function defined as:

$\map f q = a^q$

where $a^q$ denotes $a$ to the power of $q$.


Then $f$ is strictly decreasing.


Proof

Let $\dfrac r s, \dfrac t u \in \Q$, where $r, t \in \Z, s, u \in \Z_{>0}$.

Let $\dfrac r s < \dfrac t u$.


Then:

\(\ds r u\) \(<\) \(\ds t s\) Real Number Ordering is Compatible with Multiplication
\(\ds \leadsto \ \ \) \(\ds a^{r u}\) \(>\) \(\ds a^{t s}\) Power Function on Base between Zero and One is Strictly Decreasing: Integer
\(\ds \leadsto \ \ \) \(\ds \paren {a^r}^u\) \(>\) \(\ds \paren {a^t}^s\) Product of Indices of Real Number: Integers
\(\ds \leadsto \ \ \) \(\ds \sqrt [u] {\paren {a^r}^u}\) \(>\) \(\ds \sqrt [u] {\paren {a^t}^s}\) Root is Strictly Increasing
\(\ds \leadsto \ \ \) \(\ds a^r\) \(>\) \(\ds \sqrt [u] {\paren {a^t}^s}\) Definition of $u$th Root
\(\ds \leadsto \ \ \) \(\ds \sqrt [s] {\paren {a^r} }\) \(>\) \(\ds \sqrt [s] {\sqrt [u] {\paren {a^t}^s} }\) Root is Strictly Increasing
\(\ds \leadsto \ \ \) \(\ds \sqrt [s] {\paren {a^r} }\) \(>\) \(\ds \sqrt [u] {\sqrt [s] {\paren {a^t}^s} }\) Root is Commutative
\(\ds \leadsto \ \ \) \(\ds \sqrt [s] {\paren {a^r} }\) \(>\) \(\ds \sqrt [u] {\paren {a^t} }\) Definition of $s$th Root
\(\ds \leadsto \ \ \) \(\ds a^{r / s}\) \(>\) \(\ds a^{t / u}\) Definition of Rational Power

$\blacksquare$