Power Rule for Derivatives/Fractional Index/Proof 2
Jump to navigation
Jump to search
Theorem
Let $n \in \N_{>0}$.
Let $f: \R \to \R$ be the real function defined as $\map f x = x^{1 / n}$.
Then:
- $\map {f'} x = n x^{n - 1}$
everywhere that $\map f x = x^n$ is defined.
When $x = 0$ and $n = 0$, $\map {f'} x$ is undefined.
Proof
Let $n \in \N_{>0}$.
Thus, let $\map f x = y = x^{1/n}$.
Thus $\map {f^{-1} } y = x = y^n$ from the definition of root.
So:
\(\ds D x^{1/n}\) | \(=\) | \(\ds \frac 1 {D y^n}\) | Derivative of Inverse Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {n y^{n - 1} }\) | Power Rule for Derivatives: Integer Index | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {n \paren {x^{1/n} }^{n - 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 n x^{\frac 1 n - 1}\) |
$\blacksquare$