Power Series Expansion for Real Area Hyperbolic Cosine/Lemma 1

From ProofWiki
Jump to navigation Jump to search

Lemma for Power Series Expansion for Real Area Hyperbolic Cosine

\(\ds \dfrac 1 {\sqrt {1 - x^2} }\) \(=\) \(\ds 1 + \frac 1 2 x^2 + \frac {1 \times 3} {2 \times 4} x^4 + \frac {1 \times 3 \times 5} {2 \times 4 \times 6} x^6 + \cdots\)
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2} x^{2 n}\)

for $x \in \R: -1 < x < 1$.


Proof

\(\ds \dfrac 1 {\sqrt {1 - x} }\) \(=\) \(\ds 1 + \frac 1 2 x + \frac {1 \times 3} {2 \times 4} x^2 + \frac {1 \times 3 \times 5} {2 \times 4 \times 6} x^3 + \cdots\) Power Series Expansion for $\dfrac 1 {\sqrt {1 - x} }$
\(\ds \leadsto \ \ \) \(\ds \dfrac 1 {\sqrt {1 - x^2} }\) \(=\) \(\ds 1 + \frac 1 2 x^2 + \frac {1 \times 3} {2 \times 4} x^4 + \frac {1 \times 3 \times 5} {2 \times 4 \times 6} x^6 + \cdots\) setting $x \gets x^2$
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2} x^{2 n}\)

for $-1 < x < 1$.

$\blacksquare$