Power Series Expansion for Reciprocal of Square of 1 + x/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$ such that $-1 < x < 1$.

Then:

\(\ds \dfrac 1 {\paren {1 + x}^2}\) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k \paren {k + 1} x^k\)
\(\ds \) \(=\) \(\ds 1 - 2 x + 3 x^2 - 4 x^3 + 5 x^4 - \cdots\)


Proof

\(\ds \frac 1 {1 + x}\) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k x^k\) Power Series Expansion for $\dfrac 1 {1 + x}$
\(\ds \leadsto \ \ \) \(\ds \frac \d {\d x} \frac 1 {1 + x}\) \(=\) \(\ds \frac \d {\d x} \sum_{k \mathop = 0}^\infty \paren {-1}^k x^k\)
\(\ds \leadsto \ \ \) \(\ds -\frac 1 {\paren {1 + x}^2}\) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k k x^{k - 1}\) differentiating with respect to $x$
\(\ds \leadsto \ \ \) \(\ds \frac 1 {\paren {1 + x}^2}\) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^{k - 1} k x^{k - 1}\) taking one of the $-1$s out
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 1}^\infty \paren {-1}^{k - 1} k x^{k - 1}\) the term in $k = 0$ vanishes
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k \paren {1 + x}k x^k\) Translation of Index Variable of Product

$\blacksquare$