Power Series Expansion for Reciprocal of Square of 1 + x/Proof 2
Jump to navigation
Jump to search
Theorem
Let $x \in \R$ such that $-1 < x < 1$.
Then:
\(\ds \dfrac 1 {\paren {1 + x}^2}\) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k \paren {k + 1} x^k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 - 2 x + 3 x^2 - 4 x^3 + 5 x^4 - \cdots\) |
Proof
\(\ds \frac 1 {\paren {1 + x} }\) | \(=\) | \(\ds \paren {1 + x}^{-2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \frac {\paren {-2}^{\underline k} } {k!} x^k\) | General Binomial Theorem | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \frac {\ds \prod_{j \mathop = 0}^{k - 1} \paren {\paren {-2} - j} } {k!} x^k\) | Definition of Falling Factorial | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \frac {\ds \prod_{j \mathop = 0}^{k - 1} \paren {-\paren {j + 2} } } {\ds \prod_{j \mathop = 1}^k j} x^k\) | Definition of Factorial and simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \frac {\ds \prod_{j \mathop = 1}^k \paren {-\paren {j + 1} } } {\ds \prod_{j \mathop = 1}^k j} x^k\) | Translation of Index Variable of Product | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \frac {\paren {-1}^k \ds \prod_{j \mathop = 1}^k \paren {j + 1} } {\ds \prod_{j \mathop = 1}^k j} x^k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^\infty \paren {-1}^k \paren {k + 1} x^k\) | simplification |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 20$: Binomial Series: $20.9$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 22$: Taylor Series: Binomial Series: $22.9.$