Primitive of Cotangent of a x
Jump to navigation
Jump to search
Theorem
- $\ds \int \cot a x \rd x = \frac {\ln \size {\sin a x} } a + C$
Proof
\(\ds \int \cot x \rd x\) | \(=\) | \(\ds \ln \size {\sin x}\) | Primitive of $\cot x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int \cot a x \rd x\) | \(=\) | \(\ds \frac 1 a \paren {\ln \size {\sin a x} } + C\) | Primitive of Function of Constant Multiple | ||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\ln \size {\sin a x} } a + C\) | simplifying |
$\blacksquare$
Examples
Cotangent of $x / 2$
- $\ds \int \cot \dfrac x 2 \rd x = 2 \ln \size {\sin \dfrac 1 2} + C$
Also see
- Primitive of $\sin a x$
- Primitive of $\cos a x$
- Primitive of $\tan a x$
- Primitive of $\sec a x$
- Primitive of $\csc a x$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 14$: Integrals involving $\cot a x$: $14.440$
- 1968: George B. Thomas, Jr.: Calculus and Analytic Geometry (4th ed.) ... (previous) ... (next): Back endpapers: A Brief Table of Integrals: $83$.