Primitive of Cube of Tangent of a x/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \tan^3 a x \rd x = \frac {\tan^2 a x} {2 a} + \frac 1 a \ln \size {\cos a x} + C$


Proof

\(\ds \int \tan^3 a x \rd x\) \(=\) \(\ds \int \tan a x \tan^2 a x \rd x\)
\(\ds \) \(=\) \(\ds \int \tan a x \paren {\sec^2 a x - 1} \rd x\) Difference of Squares of Secant and Tangent
\(\ds \) \(=\) \(\ds \int \tan a x \sec^2 a x \rd x - \int \tan a x \rd x\) Linear Combination of Primitives
\(\ds \) \(=\) \(\ds \frac {\tan^2 a x} {2 a} - \int \tan a x \rd x + C\) Primitive of $\tan^n a x \sec^2 a x$: $n = 1$
\(\ds \) \(=\) \(\ds \frac {\tan^2 a x} {2 a} - \paren {\frac {-\ln \size {\cos a x} } a} + C\) Primitive of $\tan a x$
\(\ds \) \(=\) \(\ds \frac {\tan^2 a x} {2 a} + \frac 1 a \ln \size {\cos a x} + C\) simplifying

$\blacksquare$