Primitive of Exponential of a x by Hyperbolic Cosine of b x/Hyperbolic Form

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int e^{a x} \cosh b x \rd x = \frac {e^{a x} \paren {a \cosh b x + b \sinh b x} } {a^2 - b^2} + C$

for $a^2 \ne b^2$.


Proof

\(\ds \int e^{a x} \cosh b x \rd x\) \(=\) \(\ds \frac {e^{a x} } 2 \paren {\frac {e^{b x} } {a + b} + \frac {e^{-b x} } {a - b} } + C\) Primitive of $e^{a x} \cosh b x$: Exponential Form
\(\ds \) \(=\) \(\ds \frac {e^{a x} } 2 \paren {\frac {e^{b x} \paren {a - b} } {\paren {a + b} \paren {a - b} } + \frac {e^{-b x} \paren {a + b} } {\paren {a - b} \paren {a + b} } } + C\)
\(\ds \) \(=\) \(\ds \frac {e^{a x} } 2 \paren {\frac {e^{b x} \paren {a - b} + e^{-b x} \paren {a + b} } {\paren {a + b} \paren {a - b} } } + C\)
\(\ds \) \(=\) \(\ds \frac {e^{a x} } 2 \paren {\frac {e^{b x} \paren {a - b} + e^{-b x} \paren {a + b} } {\paren {a^2 - b^2} } } + C\) Difference of Two Squares
\(\ds \) \(=\) \(\ds \frac {e^{a x} } {a^2 - b^2} \paren {\frac {a e^{b x} - b e^{b x} + a e^{-b x} + b e^{-b x} } 2} + C\)
\(\ds \) \(=\) \(\ds \frac {e^{a x} } {a^2 - b^2} \paren {a \frac {e^{b x} + e^{-b x} } 2 + b \frac {e^{b x} - e^{-b x} } 2} + C\)
\(\ds \) \(=\) \(\ds \frac {e^{a x} } {a^2 - b^2} \paren {a \frac {e^b x + e^{-b} x} 2 + b \sinh b x} + C\) Definition of Hyperbolic Sine
\(\ds \) \(=\) \(\ds \frac {e^{a x} } {a^2 - b^2} \paren {a \cosh b x + b \sinh b x } + C\) Definition of Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \frac {e^{a x} \paren {a \cosh b x + b \sinh b x} } {a^2 - b^2} + C\)

$\blacksquare$


Also see