Primitive of Inverse Hyperbolic Secant of x over a/Corollary

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \sech^{-1} \frac x a \rd x = -x \paren {-\sech^{-1} \dfrac x a} - a \arcsin \dfrac x a + C$

where $-\sech^{-1}$ denotes the negative branch of the real inverse hyperbolic secant multifunction.


Proof

\(\ds -\sech^{-1} \frac x a\) \(=\) \(\ds -\arsech \frac x a\) Definition of Real Inverse Hyperbolic Secant
\(\ds \leadsto \ \ \) \(\ds \int -\sech^{-1} \frac x a \rd x\) \(=\) \(\ds -\int \arsech \frac x a \rd x\)
\(\ds \) \(=\) \(\ds -\paren {x \arsech \dfrac x a + a \arcsin \dfrac x a + C}\) Primitive of $\arsech \dfrac x a$
\(\ds \) \(=\) \(\ds -x \paren {-\sech^{-1} \dfrac x a} - a \arcsin \dfrac x a + C\) Definition of Real Inverse Hyperbolic Secant

$\blacksquare$


Sources