Primitive of Power of x by Logarithm of a x

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int x^n \ln a x \rd x = \dfrac {x^{n + 1} } {n + 1} \ln a x - \dfrac {x^{n + 1} } {\paren {n + 2}^2} + C$

for $n \ne -1$.


Proof

With a view to expressing the primitive in the form:

$\ds \int u \frac {\d v} {\d x} \rd x = u v - \int v \frac {\d u} {\d x} \rd x$

let:

\(\ds u\) \(=\) \(\ds \ln a x\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d u} {\d x}\) \(=\) \(\ds \frac 1 x\) Derivative of $\ln a x$


and let:

\(\ds \frac {\d v} {\d x}\) \(=\) \(\ds x^n\)
\(\ds \leadsto \ \ \) \(\ds v\) \(=\) \(\ds \frac {x^{n + 1} } {n + 1}\) Primitive of Power


Then:

\(\ds \int x^n \ln a x \rd x\) \(=\) \(\ds \frac {x^{n + 1} } {n + 1} \ln a x - \int \frac {x^{n + 1} } {n + 1} \paren {\frac 1 x} \rd x\) Integration by Parts
\(\ds \) \(=\) \(\ds \frac {x^{n + 1} } {n + 1} \ln a x - \frac 1 {n + 1} \int x^n \rd x\) Primitive of Constant Multiple of Function
\(\ds \) \(=\) \(\ds \frac {x^{n + 1} } {n + 1} \ln a x - \frac 1 {n + 1} \paren {\frac {x^{n + 1} } {n + 1} } + C\) Primitive of Power
\(\ds \) \(=\) \(\ds \frac {x^{n + 1} } {n + 1} \paren {\ln a x - \frac 1 {n + 1} } + C\) simplifying

$\blacksquare$


Also see


Sources