Primitive of Reciprocal of Power of Root of 2 a x minus x squared

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \dfrac {\d x} {\paren {\sqrt {2 a x - x^2} }^n} = \frac {\paren {x - a} \paren {\sqrt {2 a x - x^2} }^{2 - n} } {\paren {n - 2} a^2} + \frac {n - 3} {\paren {n - 2} a^2} \int \dfrac {\d x} {\paren {\sqrt {2 a x - x^2} }^{n - 2} }$


Proof

\(\ds \int \dfrac {\d x} {\paren {\sqrt {2 a x - x^2} }^{n - 2} }\) \(=\) \(\ds \int \paren {\sqrt {2 a x - x^2} }^{2 - n} \rd x\)
\(\ds \) \(=\) \(\ds \frac {\paren {x - a} \paren {\sqrt {2 a x - x^2} }^{2 - n} } {\paren {2 - n} + 1} + \frac {\paren {2 - n} a^2} {\paren {2 - n} + 1} \int \paren {\sqrt {2 a x - x^2} }^{\paren {2 - n} - 2} \rd x\) Primitive of $\paren {\sqrt {2 a x - x^2} }^{n - 2}$
\(\ds \) \(=\) \(\ds \frac {\paren {x - a} \paren {\sqrt {2 a x - x^2} }^{2 - n} } {3 - n} + \frac {\paren {2 - n} a^2} {3 - n} \int \dfrac {\d x} {\paren {\sqrt {2 a x - x^2} }^n} \rd x\) simplifying
\(\ds \leadsto \ \ \) \(\ds \frac {n - 3} {\paren {n - 2} a^2} \int \dfrac {\d x} {\paren {\sqrt {2 a x - x^2} }^{n - 2} }\) \(=\) \(\ds \frac {n - 3} {\paren {n - 2} a^2} \frac {\paren {x - a} \paren {\sqrt {2 a x - x^2} }^{2 - n} } {3 - n} + \int \dfrac {\d x} {\paren {\sqrt {2 a x - x^2} }^n} \rd x\) multiplying both sides by $\dfrac {n - 3} {\paren {n - 2} a^2}$
\(\ds \) \(=\) \(\ds -\frac {\paren {x - a} \paren {\sqrt {2 a x - x^2} }^{2 - n} } {\paren {n - 2} a^2} + \int \dfrac {\d x} {\paren {\sqrt {2 a x - x^2} }^n} \rd x\) simplifying

from which the result follows immediately.

$\blacksquare$


Sources