Primitive of Reciprocal of Root of a x + b by Root of p x + q/Lemma 1

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $\frac 1 {\sqrt {\paren {a x + b} \paren {p x + q} } }$

Let $u = \sqrt {a x + b}$.

Then:

$\ds \sqrt {p x + q} = \sqrt {\paren {\frac p a} \paren {u^2 - \paren {\frac {b p - a q} p} } }$


Proof

We have:

\(\ds u\) \(=\) \(\ds \sqrt {a x + b}\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds \frac {u^2 - b} a\)
\(\ds \leadsto \ \ \) \(\ds \sqrt {p x + q}\) \(=\) \(\ds \sqrt {p \paren {\frac {u^2 - b} a} + q}\)
\(\ds \) \(=\) \(\ds \sqrt {\frac {p \paren {u^2 - b} + a q} a}\)
\(\ds \) \(=\) \(\ds \sqrt {\frac {p u^2 - b p + a q} a}\)
\(\ds \) \(=\) \(\ds \sqrt {\paren {\frac p a} \paren {u^2 - \paren {\frac {b p - a q} p} } }\)

$\blacksquare$