Primitive of Reciprocal of Root of a x squared plus b x plus c/Examples/x^2 + 4 x + 5

From ProofWiki
Jump to navigation Jump to search

Example of Use of Primitive of $\dfrac 1 {\sqrt {a x^2 + b x + c} }$

$\ds \int \dfrac {\d x} {\sqrt {x^2 + 4 x + 5} } = \map \ln {x + 2 + \sqrt {x^2 + 4 x + 5} } + C$


Proof

We aim to use Primitive of $\dfrac 1 {\sqrt {a x^2 + b x + c} }$ with:

\(\ds a\) \(=\) \(\ds 1\)
\(\ds b\) \(=\) \(\ds 4\)
\(\ds c\) \(=\) \(\ds 5\)

We note that:

\(\ds b^2 - 4 a c\) \(=\) \(\ds 4^2 - 4 \times 1 \times 5\)
\(\ds \) \(=\) \(\ds 16 - 20\)
\(\ds \) \(=\) \(\ds -4\)


Hence from Primitive of $\dfrac 1 {\sqrt {a x^2 + b x + c} }$:

$\ds \int \frac {\d x} {\sqrt {a x^2 + b x + c} } = \dfrac 1 {\sqrt a} \map \arsinh {\dfrac {2 a x + b} {\sqrt {4 a c - b^2} } } + C$


Substituting for $a$, $b$ and $c$ and simplifying:

\(\ds \int \frac {\d x} {\sqrt {x^2 + 4 x + 5} }\) \(=\) \(\ds \dfrac 1 {\sqrt 1} \map \arsinh {\dfrac {2 \cdot 1 \cdot x + 4} {\sqrt {4 \cdot 1 \cdot 5 - 4^2} } } + C\)
\(\ds \) \(=\) \(\ds \map \arsinh {x + 2} + C\) simplifying
\(\ds \) \(=\) \(\ds \map \ln {x + 2 + \sqrt {\paren {x + 2}^2 + 1} } + C\) Definition 2 of Inverse Hyperbolic Sine
\(\ds \) \(=\) \(\ds \map \ln {x + 2 + \sqrt {x^2 + 4 x + 5} } + C\) simplification

$\blacksquare$


Sources