Primitive of Reciprocal of Root of x squared plus a squared/Logarithm Form/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {\sqrt {x^2 + a^2} } = \map \ln {x + \sqrt {x^2 + a^2} } + C$


Proof

\(\ds \int \frac {\d x} {\sqrt {x^2 + a^2} }\) \(=\) \(\ds \arsinh {\frac x a} + C\) Primitive of $\dfrac 1 {\sqrt {x^2 + a^2} }$ in $\arsinh$ form
\(\ds \) \(=\) \(\ds \map \ln {x + \sqrt {x^2 + a^2} } - \ln a + C\) $\arsinh \dfrac x a$ in Logarithm Form
\(\ds \) \(=\) \(\ds \map \ln {x + \sqrt {x^2 + a^2} } + C\) subsuming $-\ln a$ into arbitrary constant

$\blacksquare$