Primitive of Reciprocal of a squared minus x squared/Logarithm Form
Jump to navigation
Jump to search
Theorem
Let $a \in \R_{>0}$ be a strictly positive real constant.
Let $x \in \R$ such that $\size x \ne a$.
$1$st Logarithm Form
$\quad \ds \int \frac {\d x} {a^2 - x^2} = \begin {cases} \dfrac 1 {2 a} \map \ln {\dfrac {a + x} {a - x} } + C & : \size x < a \\ & \\ \dfrac 1 {2 a} \map \ln {\dfrac {x + a} {x - a} } + C & : \size x > a \\ & \\ \text {undefined} & : \size x = a \end {cases}$
$2$nd Logarithm Form
- $\ds \int \frac {\d x} {a^2 - x^2} = \dfrac 1 {2 a} \ln \size {\dfrac {a + x} {a - x} } + C$