Primitive of Reciprocal of a x squared plus b x plus c/c equal to 0/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $c = 0$.

Then:

$\ds \int \frac {\d x} {a x^2 + b x + c} = \frac 1 b \ln \size {\frac x {a x + b} } + C$


Proof

First:

\(\ds c\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \int \frac {\d x} {a x^2 + b x + c}\) \(=\) \(\ds \int \frac {\d x} {a x^2 + b x}\)
\(\ds \) \(=\) \(\ds \int \frac {\d x} {x \paren {a x + b} }\)
\(\ds \) \(=\) \(\ds \frac 1 b \ln \size {\frac x {a x + b} } + C\) Primitive of $\dfrac 1 {x \paren {a x + b} }$

$\blacksquare$