Primitive of Reciprocal of p by Sine of a x plus q by Cosine of a x/Lemma

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of p by Sine of a x plus q by Cosine of a x

$\ds \frac 1 2 \map \arctan {\dfrac {-p} q} + \frac \pi 4 = \frac {\arctan \dfrac q p} 2$


Proof

\(\ds y\) \(=\) \(\ds \frac 1 2 \arctan \dfrac {-p} q + \frac \pi 4\) making a definition
\(\ds \leadsto \ \ \) \(\ds 2 y - \frac \pi 2\) \(=\) \(\ds \arctan \dfrac {-p} q\) rearranging
\(\ds \leadsto \ \ \) \(\ds \map \tan {2 y - \frac \pi 2}\) \(=\) \(\ds \dfrac {-p} q\) Definition of Real Arctangent
\(\ds \leadsto \ \ \) \(\ds \map \tan {2 y + \frac {3 \pi} 2}\) \(=\) \(\ds \dfrac {-p} q\) Tangent Function is Periodic on Reals
\(\ds \leadsto \ \ \) \(\ds - \map \cot {2 y}\) \(=\) \(\ds \dfrac {-p} q\) Tangent of Angle plus Three Right Angles
\(\ds \leadsto \ \ \) \(\ds \map \tan {2 y}\) \(=\) \(\ds \dfrac q p\) Cotangent is Reciprocal of Tangent
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \frac {\arctan \dfrac q p} 2\) Definition of Real Arctangent

$\blacksquare$