Primitive of Reciprocal of p x + q by Root of a x + b/Lemma

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $\frac 1 {\paren {p x + q} \sqrt {a x + b} }$

Let $a, b, p, q \in \R$ such that $a p \ne b q$ and such that $p \ne 0$.

Then:

$\ds \int \frac {\d x} {\paren {p x + q} \sqrt {a x + b} } = \dfrac 2 p \int \frac {\d u} {u^2 - \paren {\dfrac {b p - a q} p} }$

where:

$u = \sqrt {a x + b}$


Proof

Let:

\(\ds u\) \(=\) \(\ds \sqrt {a x + b}\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds \frac {u^2 - b} a\)

and:

\(\ds \dfrac {\d u} {\d x}\) \(=\) \(\ds \dfrac a {2 \sqrt {a x + b} }\) Power Rule for Derivatives, Chain Rule for Derivatives
\(\ds \leadsto \ \ \) \(\ds \dfrac {\d x} {\d u}\) \(=\) \(\ds \dfrac {2 \sqrt {a x + b} } a\) Derivative of Inverse Function


Then:

\(\ds \int \frac {\d x} {\paren {p x + q} \sqrt {a x + b} }\) \(=\) \(\ds \int \frac 1 {\paren {p \paren {\frac {u^2 - b} a} + q} \sqrt {a x + b} } \dfrac {2 \sqrt {a x + b} } a \rd u\) Integration by Substitution
\(\ds \) \(=\) \(\ds \dfrac 2 a \int \frac {\d u} {\paren {\dfrac {p \paren {u^2 - b} + a q} a} }\) simplifying
\(\ds \) \(=\) \(\ds \dfrac 2 p \int \frac {\d u} {u^2 - \dfrac {b p - a q} p}\) simplifying

$\blacksquare$