Primitive of Reciprocal of x by a x + b squared/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $\dfrac 1 {x \paren {a x + b}^2}$

$\dfrac 1 {x \paren {a x + b}^2} \equiv \dfrac 1 {b^2 x} - \dfrac a {b^2 \paren {a x + b} } - \dfrac a {b \paren {a x + b}^2}$


Proof

\(\ds \dfrac 1 {x \paren {a x + b}^2}\) \(\equiv\) \(\ds \dfrac A x + \dfrac B {a x + b} + \dfrac C {\paren {a x + b}^2}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A \paren {a x + b}^2 + B x \paren {a x + b} + C x\) multiplying through by $x \paren {a x + b}^2$
\(\ds \) \(\equiv\) \(\ds A a^2 x^2 + 2 A a b x + A b^2 + B a x^2 + B b x + C x\) multiplying everything out


Setting $a x + b = 0$ in $(1)$:

\(\ds a x + b\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds -\frac b a\)
\(\ds \leadsto \ \ \) \(\ds C \paren {-\frac b a}\) \(=\) \(\ds 1\) substituting for $x$ in $(1)$: terms in $a x + b$ are all $0$
\(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds -\frac a b\)


Equating constants in $(1)$:

\(\ds 1\) \(=\) \(\ds A b^2\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac 1 {b^2}\)


Equating $2$nd powers of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A a^2 + B a\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds -\frac a {b^2}\) substituting for $A$ from $(2)$ and simplifying


Summarising:

\(\ds A\) \(=\) \(\ds \frac 1 {b^2}\)
\(\ds B\) \(=\) \(\ds -\frac a {b^2}\)
\(\ds C\) \(=\) \(\ds -\frac a b\)

Hence the result.

$\blacksquare$