Primitive of Reciprocal of x cubed by a x + b cubed/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $\dfrac 1 {x^3 \paren {a x + b}^3}$

$\dfrac 1 {x^3 \paren {a x + b}^3} \equiv \dfrac {6 a^2} {b^5 x} - \dfrac {3 a} {b^4 x^2} + \dfrac 1 {b^3 x^3} - \dfrac {6 a^3} {b^5 \paren {a x + b} } -\dfrac {3 a^3} {b^4 \paren {a x + b}^2} - \dfrac {a^3} {b^3 \paren {a x + b}^3}$


Proof

\(\ds \dfrac 1 {x^3 \paren {a x + b}^3}\) \(\equiv\) \(\ds \dfrac A x + \dfrac B {x^2} + \dfrac C {x^3} + \dfrac D {a x + b} + \dfrac E {\paren {a x + b}^2} + \dfrac F {\paren {a x + b}^3}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A x^2 \paren {a x + b}^3 + B x \paren {a x + b}^3 + C \paren {a x + b}^3 + D x^3 \paren {a x + b}^2 + E x^2 \paren {a x + b} + F x^2\) multiplying through by $x^2 \paren {a x + b}^3$
\(\ds \) \(\equiv\) \(\ds A a^3 x^5 + 3 A a^2 b x^4 + 3 A a b^2 x^3 + A b^3 x^2\) multiplying everything out
\(\ds \) \(\) \(\, \ds + \, \) \(\ds B a^3 x^4 + 3 B a^2 b x^3 + 3 B a b^2 x^2 + B b^3 x\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds C a^3 x^3 + 3 C a^2 b x^2 + 3 C a b^2 x + C b^3\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds D a^2 x^5 + 2 D a b x^4 + D b^2 x^3 + E a x^4 + E b x^3 + F x^3\)


Setting $a x + b = 0$ in $(1)$:

\(\ds a x + b\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds -\frac b a\)
\(\ds \leadsto \ \ \) \(\ds F \paren {-\frac b a}^3\) \(=\) \(\ds 1\) substituting for $x$ in $(1)$: terms in $a x + b$ are all $0$
\(\ds \leadsto \ \ \) \(\ds F\) \(=\) \(\ds -\frac {a^3} {b^3}\)


Equating constants in $(1)$:

\(\ds 1\) \(=\) \(\ds C b^3\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds \frac 1 {b^3}\)


Equating $1$st powers of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds B b^3 + 3 C a b^2\)
\(\ds \leadsto \ \ \) \(\ds B b^3\) \(=\) \(\ds -3 \frac 1 {b^3} a b^2\) substituting for $C$ from $(2)$
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac {-3 a} {b^4}\) simplifying


Equating $2$nd powers of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A b^3 + 3 B a b^2 + 3 C a^2 b\)
\(\ds \leadsto \ \ \) \(\ds A b^3\) \(=\) \(\ds -3 \frac {-3 a} {b^4} a b^2 - 3 \frac 1 {b^3} a^2 b\) substituting for $C$ from $(2)$ and $B$ from $(3)$
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac {9 a^2} {b^5} - 3 \frac {a^2} {b^5}\) simplifying
\(\text {(4)}: \quad\) \(\ds \) \(=\) \(\ds \frac {6 a^2} {b^5}\) simplifying


Equating $5$th powers of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A a^3 + D a^2\)
\(\ds \leadsto \ \ \) \(\ds D a^2\) \(=\) \(\ds -\frac {6 a^2} {b^5} a^3\) substituting for $A$ from $(4)$
\(\text {(5)}: \quad\) \(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds -\frac {6 a^3} {b^5}\) simplifying


Equating $4$th powers of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds 3 A a^2 b + B a^3 + 2 D a b + E a\)
\(\ds \leadsto \ \ \) \(\ds E\) \(=\) \(\ds -3 A a b - B a^2 - 2 D b\) rearranging
\(\ds \) \(=\) \(\ds -3 a b \frac {6 a^2} {b^5} - \frac {-3 a} {b^4} a^2 - 2 \frac {-6 a^3} {b^5} b\) substituting for $A$ from $(4)$, $B$ from $(3)$ and $D$ from $(5)$
\(\ds \) \(=\) \(\ds -\frac {18 a^3} {b^4} + \frac {3 a^3} {b^4} + \frac {12 a^3} {b^4}\) simplifying
\(\ds \) \(=\) \(\ds -\frac {3 a^3} {b^4}\) simplifying


Summarising:

\(\ds A\) \(=\) \(\ds \frac {6 a^2} {b^5}\)
\(\ds B\) \(=\) \(\ds -\frac {3 a} {b^4}\)
\(\ds C\) \(=\) \(\ds \frac 1 {b^3}\)
\(\ds D\) \(=\) \(\ds -\frac {6 a^3} {b^5}\)
\(\ds E\) \(=\) \(\ds -\frac {3 a^3} {b^4}\)
\(\ds F\) \(=\) \(\ds -\frac {a^3} {b^3}\)

Hence the result.

$\blacksquare$