Primitive of Reciprocal of x squared by Root of x squared minus a squared/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int \frac {\d x} {x^2 \sqrt {x^2 - a^2} } = \frac {\sqrt {x^2 - a^2} } {a^2 x} + C$

for $\size x > a$.


Proof

Let:

\(\ds x\) \(=\) \(\ds a \cosh \theta\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d x} {\d \theta}\) \(=\) \(\ds a \sinh \theta\) Derivative of Hyperbolic Cosine


Then:

\(\ds x\) \(=\) \(\ds a \cosh \theta\)
\(\ds \leadsto \ \ \) \(\ds \sqrt {x^2 - a^2}\) \(=\) \(\ds \sqrt {a^2 \paren {\cosh^2 \theta - 1} }\)
\(\ds \) \(=\) \(\ds \sqrt {a^2 \sinh^2 \theta}\) Difference of Squares of Hyperbolic Cosine and Sine
\(\ds \) \(=\) \(\ds a \sinh \theta\)


Hence:

\(\ds \int \frac {\d x} {x^2 \sqrt {x^2 - a^2} }\) \(=\) \(\ds \int \frac {a \sinh \theta \rd \theta} {a^2 \cosh^2 \theta \cdot a \sinh \theta}\) Integration by Substitution
\(\ds \) \(=\) \(\ds \dfrac 1 {a^2} \int \frac {\rd \theta} {\cosh^2 \theta}\) simplifying
\(\ds \) \(=\) \(\ds \dfrac 1 {a^2} \tanh \theta + C\) Primitive of $\dfrac 1 {\cosh^2 \theta}$
\(\ds \) \(=\) \(\ds \dfrac 1 {a^2} \dfrac {a \sinh \theta} {a \cosh \theta} + C\) Definition 2 of Hyperbolic Tangent
\(\ds \) \(=\) \(\ds \dfrac 1 {a^2} \dfrac {\sqrt {x^2 - a^2} } x + C\) substituting for $a \sinh \theta$ and $a \cosh \theta$

$\blacksquare$


Also see