Primitive of Reciprocal of x squared by a x squared plus b x plus c/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of $\dfrac 1 {x^2 \paren {a x^2 + b x + c} }$

$\dfrac 1 {x^2 \paren {a x^2 + b x + c} } \equiv \dfrac {-b} {c^2 x} + \dfrac 1 {c x^2} + \dfrac {a b x + b^2 - a c} {c^2 \paren {a x^2 + b x + c} }$


Proof

\(\ds \dfrac 1 {x \paren {a x^2 + b x + c} }\) \(\equiv\) \(\ds \frac A x + \frac B x^2 + \frac {C x + D} {a x^2 + b x + c}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A \paren {a x^2 + b x + c} x + B \paren {a x^2 + b x + c} + C x^3 + D x^2\) multiplying through by $x^2 \paren {a x^2 + b x + c}$


Setting $x = 0$ in $(1)$:

\(\ds B c\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac 1 c\)


Equating coefficients of $x$ in $(1)$:

\(\ds A c + B b\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds A c\) \(=\) \(\ds \frac {-b} c\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac {-b} {c^2}\)


Equating coefficients of $x^3$ in $(1)$:

\(\ds A a + C\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds \frac {a b} {c^2}\)


Equating coefficients of $x^2$ in $(1)$:

\(\ds A b + B a + D\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds \frac {b^2 - a c} {c^2}\)


Summarising:

\(\ds A\) \(=\) \(\ds \frac {-b} {c^2}\)
\(\ds B\) \(=\) \(\ds \frac 1 c\)
\(\ds C\) \(=\) \(\ds \frac {a b} {c^2}\)
\(\ds D\) \(=\) \(\ds \frac {b^2 - a c} {c^2}\)


Hence the result.

$\blacksquare$