Primitive of Reciprocal of x squared by x squared minus a squared/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of $x^2 \left({x^2 - a^2}\right)$

$\dfrac 1 {x^2 \paren {x^2 - a^2} } \equiv \dfrac 1 {a^2 \paren {x^2 - a^2} } - \dfrac 1 {a^2 x^2}$


Proof

\(\ds \dfrac 1 {x^2 \paren {x^2 - a^2} }\) \(\equiv\) \(\ds \dfrac A x + \dfrac B {x^2} + \dfrac {C x + D} {x^2 - a^2}\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A x \paren {x^2 - a^2} + B \paren {x^2 - a^2} + C x^3 + D x^2\) multiplying through by $x^2 \paren {x^2 - a^2}$


Setting $x = 0$ in $(1)$:

\(\ds -B a^2\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds -\frac 1 {a^2}\)


Equating coefficients of $x$ in $(1)$:

\(\ds 0\) \(=\) \(\ds -A a^2\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds 0\)


Equating coefficients of $x^3$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A + C\)
\(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds 0\)


Equating coefficients of $x^2$ in $(1)$:

\(\ds 0\) \(=\) \(\ds B + D\)
\(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds \frac 1 {a^2}\)


Summarising:

\(\ds A\) \(=\) \(\ds 0\)
\(\ds B\) \(=\) \(\ds \frac {-1} {a^2}\)
\(\ds C\) \(=\) \(\ds 0\)
\(\ds D\) \(=\) \(\ds \frac 1 {a^2}\)

Hence the result.

$\blacksquare$