Primitive of Reciprocal of x squared minus a squared squared/Partial Fraction Expansion

From ProofWiki
Jump to navigation Jump to search

Lemma for Primitive of Reciprocal of $\paren {x^2 - a^2}^2$

$\dfrac 1 {\paren {x^2 - a^2}^2} \equiv \dfrac 1 {4 a^3 \paren {x + a} } - \dfrac 1 {4 a^3 \paren {x - a} } + \dfrac 1 {4 a^2 \paren {x + a}^2} + \dfrac 1 {4 a^2 \paren {x - a}^2}$


Proof

\(\ds \dfrac 1 {\paren {x^2 - a^2}^2}\) \(=\) \(\ds \dfrac 1 {\paren {x + a}^2 \paren {x - a}^2}\) Difference of Two Squares
\(\ds \) \(\equiv\) \(\ds \dfrac A {x + a} + \dfrac B {\paren {x + a}^2} + \dfrac C {x - a} + \dfrac D {\paren {x - a}^2}\)
\(\ds \leadsto \ \ \) \(\ds 1\) \(\equiv\) \(\ds A \paren {x^2 - a^2} \paren {x - a} + B \paren {x - a}^2 + C \paren {x^2 - a^2} \paren {x + a} + D \paren {x + a}^2\) multiplying through by $\paren {x^2 - a^2}^2$
\(\text {(1)}: \quad\) \(\ds \) \(\equiv\) \(\ds A x^3 - A a x^2 - A a^2 x + A a^3 + B x^2 - 2 B a x + B a^2\) multiplying out
\(\ds \) \(\) \(\, \ds + \, \) \(\ds C x^3 + C a x^2 - C a^2 x - C a^3 + D x^2 + 2 D a x + D a^2\)


Setting $x = a$ in $(1)$:

\(\ds D \paren {2 a}^2\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds D\) \(=\) \(\ds \frac 1 {4 a^2}\)


Setting $x = -a$ in $(1)$:

\(\ds B \paren {-2 a}^2\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds B\) \(=\) \(\ds \frac 1 {4 a^2}\)


Equating coefficients of $x^3$ in $(1)$:

\(\ds 0\) \(=\) \(\ds A + C\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds -C\)


Equating coefficients of $x^2$ in $(1)$:

\(\ds - A a + C a + B + D\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds - A a + C a + \frac 1 {4 a^2} + \frac 1 {4 a^2}\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds C a + C a + \frac 1 {2 a^2}\) \(=\) \(\ds 0\) as $A = - C$
\(\ds \leadsto \ \ \) \(\ds 2 C\) \(=\) \(\ds \frac {-1} {2 a^3}\)
\(\ds \leadsto \ \ \) \(\ds C\) \(=\) \(\ds \frac {-1} {4 a^3}\)
\(\ds \leadsto \ \ \) \(\ds A\) \(=\) \(\ds \frac 1 {4 a^3}\)


Summarising:

\(\ds A\) \(=\) \(\ds \frac 1 {4 a^3}\)
\(\ds B\) \(=\) \(\ds \frac 1 {4 a^2}\)
\(\ds C\) \(=\) \(\ds \frac {-1} {4 a^3}\)
\(\ds D\) \(=\) \(\ds \frac 1 {4 a^2}\)

Hence the result.

$\blacksquare$